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Abstract

In this paper, analysis of a simple model of recurrent network dynamics is used to gain

qualitative insights into the training dynamics of multilayer perceptrons (MLPs). These

insights allow the training methods used for MLPs to be modified to significantly improve

network performance. In previous work [1], the Probabihstic Neural Network (PNN) [2], was

shown to provide better zero-reject error performance on character and fingerprint classifica-

tion problems than Radial Basis Function and MLP-based neural network methods. We will

show that performance equal to or better than PNN can be achieved with a single three-layer

MLP by making fundamental changes in the network optimization strategy. These changes

are: 1) Neuron activation functions are used which reduce the probabihty of singular Jaco-

bians; 2) Successive regularization is used to constrain the volume of the minimized weight

space; 3) Boltzmann pruning [3] is used to constrain the dimension of the weight space; and

4) Prior class probabilities are used to normalize all error calculations so that statistically

significant samples of rare but important classes can be included without distorting the error

surface. All four of these changes are made in the inner loop of a conjugate gradient optimiza-

tion iteration [4] and are intended to simphfy the training dynamics of the optimization. On
handprinted digits and fingerprint classification problems these modifications improve error-

reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

1 Introduction

One of the basic difl^iculties in recognizing images using pattern recognition methods is that

the set of patterns of interest is a small subset of all the possible patterns that can be repre-

sented in the image space. As an example, if characters in an OCR system are represented by

32 by 32 pixel binary images only a small fraction of the possible images are characters.

If the features used to represent these characters form a complete representation of the image

down to some specified resolution, such as a discrete cosine transform, the feature set is a

dense compact vector space representation of the image. The image training set is a fractal

object in this feature space. This statement of the recognition problem poses it as the inverse
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of the fractal image compression problem [5] and. shows that the neural network recognition

problem for images retains the “geometry of nature” [6] seen in these images. This paper

explores methods which allow neural networks to accurately classify image based objects

which are sampled from fractal objects in the compact feature space used for recognition.

In previous work on character and fingerprint classification [1], PNN networks were shown

to be superior to MLP networks in classification accuracy. In later work, [7], combinations of

PNN and MLP networks were shown to be equal to PNN in accuracy and to have superior

reject-accuracy performance. These results were achieved by using 45 PNN networks to make

binary decisions between digit pairs and combining the 45 outputs with a single MLP. This

procedure is much more expensive than conventional MLP training of a single network and

uses much more memory space.

When the results of the binary decision network [7] were analyzed for digit recognition

it was found that the feature space used in the recognition process had a topological struc-

ture which locally had an intrinsic dimension [8] of 10.5 but global Karhunen-Loeve (K-L)

transform dimension of approximately 100. The number of features needed to make binary

decisions machines discriminate between digits was larger than the intrinsic dimensionality.

For binary decision machines, typical feature set sizes were 20 to 28 but never approached

the number of features required by the global problem for MLPs, 48 to 52. Similar tests

showed a comparable structure in the fingerprint feature data. This explains the difficidty of

these problems; the MLP is being used to approximate a complex fractal object, the set of

decision surfaces, which has a typical local dimension of 10 embedded in a space of dimension

100. Since the domain of each prototype in the PNN network is local, PNN can more easily

approximate surfaces with this topology. Figure 1 shows a typical PNN decision surface and

figure 2 shows a typical MLP decision surface. See figure 8 of [1] for additional examples of

this type of local structure in PNN-based recognition.

The local nature of PNN decision surfaces also explains why MLPs have better error-

reject performance. In [9], it was shown that the error-reject curve is most rapidly decreasing

when binary choices are made between classes. The decision surfaces in figure 1 are such

that, as the radius of a test region expands, multiple class regions are intersected. This wiU

decrease the slope of the reject-accuracy curve. Simpler class decision surfaces result in better

reject-accuracy performance, so that the shape of the reject curve can be used to assess the

complexity of decision surfaces.

Neural networks have been proven to be a general nonlinear function approximator [10] so,

in theory, they should be capable of approximating complex decision surfaces. An interesting,

if somewhat simphfied, conjecture is that since we are trying to learn a complex surface the

complexity of the training process might provide some insight into the learning problem. To
obtain these insights we study the dynamics of a simple weakly nonlinear recurrent network

model. The model contains both linear and second-order rate-dependent terms which couple

all of the nodal voltages. This model is solved in closed form but stiU shows several interesting

ways in which the dynamics of feedback signals wiU influence network behavior.

The MLP networks used in practical recognition problems are too complex to be subject

to direct analysis but the quantitative insights provided by the simple model can be used to

develop better training methods.

In this paper we will show that four modifications to the conjugate gradient method

discussed in [4] wiU allow a three-layer MLP to approximate the required decision surface

with zero-reject error similar to PNN and fc-nearest-neighbor (KNN) methods, and error-

reject performance better than the best binary decision method discussed in [7], indicating
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that the resulting decision surfaces are both the most accurate and simplest approximations

to the character and fingerprint classification problem yet found.

In section 2 a simple dynamical neural network model is presented which is complex

enough to show many interesting dynamic effects but simple enough to be solved in closed

form. In section 3 the relationship between structural stability and optimization is used to

develop qualitative insights into network training. In section 4 we wiU discuss methods which

the network dynamics suggest for changes in training. In section 5 we will discuss the changes

in training method used to improve network accuracy while simplifying network structure.

In section 6 we will discuss the results of these changes on classification of handprinted digits

and fingerprints.

2 A Simple Dynamical Network Model

To understand the dynamics behind training, it is helpful to analyze a neural network model

that has feedback between the nodes, as the MLP has during training, but is simple enough

to be solved in closed form.

Consider a number of neuron nodes with nodal voltages, U, which can be written either

in matrix form:

or as a vector:

fui{t) ••• 0 \

\ 0 0 Un it)j

u =

( Wl {t)\

KUr^{t)J

( 1 )

(2)

as is required by the linear or quadratic order of interaction.

These neurons axe linear and the network is fully recurrent so that the interaction of the

neurons is described by a non-stationary set of first order couphngs:

G =

and a set of higher order couplings:

F =

( 9\,lit)

\9n,l (t)

I /l,l (0

\/n,l (t)

The system dynamics is described by:

9l,n (^)

9n,n (^)

dt
(UdF-f G)U

which allows the network to have steady states Us given by:

Us = -F-^ G

(3)

(4)

(
5

)

( 6 )
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The solution of (5) was postulated as (7) and checked using a symbolic mathematics

program to validate the solution terms. Terms generated in this checking process are given

in detail in the Appendix. See [11] page 99 or [12] page 60 for similar linear problems which

were used as clues to the proposed solution. The solution derived and checked in this way is:

U = (I - /F exp(/G dt) exp(/Gdt)) U(0) (7)

where the matrix exponential is defined by:

exp(A) = I + A + AV2! + AV3! + --- (8)

and where A can be expanded in terms of its eigenvalues and eigenvectors as:

A = S^AaS (9)

with S unitary so that = S“^, with A the matrix of eigenvalues of A taking the form:

/ \i{t) * * \

: *

\ 0 0 Xnit))

(
10

)

In general G will have complex eigenvalues; only in the symmetric case are all eigenvalues

real and the upper triangle of Lambda^ zero. This symmetry requirement makes the con-

struction of stable associative memories with symmetric weights very difficult. These issues

are discussed in [13] along with many other aspects of the general network stability problem.

Any iteration carried out with finite precision On G wiU result in loss of symmetry and create

oscillations in the dynamic system. These oscillations may decay in a stable system but

intermediate oscillatory components will stiU exist.

The inclusion of driving factors which are assumed to be independent of time is relatively

straightforward. The G matrix is augmented from a dimension of n to n -f g where q is the

number of system independent driving factors. The solution to the corresponding augmented

part of Ud matrix is just the augmented U(0) vector. This results in a stable driving term

from equation (5) and a solution to this part of the equation of the form: Uj = U(0)d. The
appendix contains more details.

Why can’t we just integrate equation (6) and use the answer for our model? First,

for n nodes there are 2n^ functions which must be evaluated and integrated to fuUy expand

equation (12). Second, equation (7) is a generalization of the dynamic system which generates

the Lorentz attractor [14], which is the source of the “butterfly wing effect” in weather

forecasting. This system has no attainable stable state and has very high sensitivity to

initial conditions. The theory of the solution to systems of this kinds is treated in [15, 14, 12].

The simplified answer is that small changes in the values of the initial conditions or in the

integration of the coefficient matrices will result in large changes in the functional form of

equation (6) when the matrix exponential and inverse are expanded.

For values F and G that are locally stationary, as during a training iteration, change in

these terms can be neglected and we write the solution as:

where for G symmetric;

U(t) = A(t)U(0)

jH.jr T,k=i Skie^'^hkj

(
11

)

(
12

)
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where is the matrix of ijth. cofactors of H, |H| is the determinant of H, 5,j are the

elements of the similarity transform of G ajid A, are its eigenvalues as given by equation (8)

assuming that G is Hermitian, and the elements of H are given by:

where:

H = I - {h,j) = {Sij - hij)

hij — ^ fik

k-l 1=1

^Ij^lk
e>^it

A/

(13)

(14)

For the case of n = 3 appropriate terms are given in the appendix.

The full solution of equation (6) can be expanded using equations (11)-(14), as shown

in the appendix. These equations are much less complex than the approach used in our

training method but show that complex dynamics will evolve even in a network that has

only a quadratic nonlinearity. Even for a symmetric network, obtaining the local linear

solution involves calculating matrices with O(n^) terms for an nth order system. Equations

(11)-(14) involve calculation of 0(n®) terms for an nth order system. In addition, each term

in (7) is a product of the form Skie^'^^Skji where each term in the non-hnear solution is a

product at least as complex as:

fik
SijSik

A/

Q Q (15)

Each term involves one non-linear factor, components of four eigenvectors (which in general

are complex numbers) and the product of two exponential terms. This increase in complexity

is a direct consequence of the F term in equation (6) being non-zero.

The center manifold theorem, given more concisely in [12] p. 115 and [14] p. 127,

states that the flow of solution to nonlinear system can be divided into three parts based

on the eigenvalue spectrum of the Jacobian of the right hand side of the equation. These

three parts are the stable manifold associated with eigenvalues with negative real part, the

unstable manifold associated with eigenvalues with positive real part, and the center manifold

associated with eigenvalues with zero real part. The stable and unstable manifolds are unique

but the center manifold need not be. The center manifold is tangent to the stable and

unstable manifolds. If any of the eigenvalues in equation (15) has zero real part, the center

manifold theorem must be used to transform equation (5) into stable, center, and unstable

manifold parts, and the solution expansion of equation (7) must be revised accordingly [16]. In

numerical calculations, rounding error and lack of precision in the input data can cause some

solution components of the stable and unstable solutions to approach the center manifold

within the rounding error of the calculation.

The complexity of even small models, n = 3 with 9 terms in the primary matrix, each

of which has 729 terms similar in form to equation (15) (see Appendix), exceeds the level of

complexity which can be locally analyzed by direct linearization about equilibrium points to

study weight stability during training. We could return to equation (5) and build a numerical

model but this would cause all of the noise present in the training data to be present in a

system of equations which would couple this noise directly to the sensitive initial conditions

and result in various numerical significance problems. The resulting terms are multipfled

to form terms which are summed to form the solution. The noise seen in the resulting

solution is not a numerical artifact but an inherent part of the system.

The situation we face in analyzing even this over-simplified model is one in which the

mechanics of the process are clear and are soluble in the closed form given by equation
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(11)-(14), but no direct comparison with real training data is feasible because the expanded

nonlinear solution is too complex to allow the components to be individually analyzed.

3 Dynamics of Optimization and Structural Sta-

bility

The dynamics of neural network training etfects the network on two time scales. The time

scales are associated with the calculation of feedback signals within an iteration and a longer

time scale associated with the sequence of optimization iterations. The dynamics can be

used to analyze the sequence of dynamic systems generated as the optimization iteration

proceeds. In any given iteration the structure of the network is fixed and the dynamics

involves the application of the feature vectors as driving inputs. Since the feature vectors

provide a forcing function this is not an equilibrium but a problem where the training data

drives the network, with error correcting feedback, to a steady state. This is the short time

scale.

The second time scale is the time scale of the optimization iteration process. At each

time step of the iteration the structure of the network is changed by weight updates and

Boltzmann pruning. On this time scale structural stability is dominant. The goal of the

iteration process is to approach a steady state where the effect of network changes minimizes

the feedback error over the training set and thus a steady state is achieved.

The link between the study of time dependent network performance and nonlinear net-

work optimization is provided by the analysis of structural stability. The mathematical

correspondence between the structural stability analysis and the Unearization used in opti-

mization is a result of both methods being based on a Taylor series expansion of the nonlinear

system about the point of interest. This expansion yields a local linear approximation to the

nonlinear system. The usual analysis of structural stability [12] for:

^ = /(U,W) (16)

is performed by a local analysis of the eigenspectrum of Z)/(Uo, Wq) at the point Uq, Wq.
The optimization by gradient-based methods of the nonlinear network is performed by lin-

earization of the nonlinear system:

‘^*^~^**
= /(U, W) - /(Ut,W) (17)

where the Ut are a set of training examples. The expansion of terms in the right hand

side of (16) is used to compute the dynamic change in the error over the training set. The
optimization is performed over the sum of all training examples using the second order term in

the expansion, the Hessian matrix, because near the desired minimum point the first order,

Jacobian, term approaches zero. Similar additional terms are also required for nonlinear

stability analysis when the Jacobian is too small. Both the analysis of local dynamic stability

and the analysis of structural stability are based on the expansion of the system of equations

in a Taylor series. When dynamic stability is involved the series is used to provide linear

approximations to the right hand side of equations such as (5). When structural stability

is involved the solution is expanded in terms of the critical parameters. For equation (7)

this requires expansion of (7) in terms of the F and G matrix elements. Details of this type
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of analysis are given in [14], chapter 5. This yields insights which can be applied to the

structural stability of the learning process.

We have found that three of the changes in training dynamics are directly related to

insights obtained from dynamics. Regularization has been shown to act as a smoother when

the neural network training process is treated as an approximation problem [17]. We can

qualitatively evaluate the effect of a quadratic regularization term on the dynamics since

such a term acts to constrain the optimization to a region near the origin. In our highly

fractal feature spaces [7], the smaller the dynamic volume the more effective the features

will be in spanning the training space, as is demonstrated from the approximation point

of view in [17]. The local feature dimension of features is about 11. The large networks

used here have 96 K-L features. The undersampling increases roughly as the power of the

difference in the global and the local dimension. For the OCR problem this is 96 — 11 so that

the undersamphng increases as the 85th power of feature space radius. This indicates that

additional training examples which expand the dynamic volume but do not alter the local

or global dimensionality of the feature set will not produce any significant improvement in

network performance.

The second insight we can obtain from dynamics is that as we expand the Jacobian of

(17), any nonlinear terms which are very small will vanish when compared to the noise in

real training data. The calculation of the K-L transform involves, for the OCR problem,

calculation of a mean image value for every location in the image. Since the values used to

calculate the mean are binary, the mean for an N example training set can only take on N
values and is only known to log 2 N bits. Even with perfect training data the K-L features

have this finite precision. Imperfect or ambiguous characters add additional uncertainty that

results in uncertainty throughout the dynamic calculation. Small signal changes in network

dynamics caused by training data noise are indistinguishable from small changes caused by

real but small dynamic terms. For MLPs with sigmoidal activation functions, these small

terms occur for both large positive and large negative values of the sum of the weighted

inputs. For the data used here the K-L transform normalizes the input signals to a uniform

dynamic range; the neural network is not needed to perform this task. This means that very

large or very small signals to the nodes are usually the result of very large or very small

weight values. Using an alternative form of the activation function, a sine function as in

(19), solves this problem by providing hidden nodal signals which have significant even or

odd order derivatives for aU signals.

The third insight provided by dynamic stability considerations involves the dynamics of

those small weights near the origin in weight space. In weight space, the stability analysis

of these variables will involve small real eigenvalues which will be dominated by weight

oscillations. The dynamics of these weights are associated with dynamic processes that have

small real parts and are therefore near the center manifold. Since the training data has a

significant noise component for characters that are nearly well formed, these characters are

readable but have numerous obscuring edge pixels. For example, the dynamics near the

center manifold is in part the result of an attempt by the optimization process to make fine

character distinctions on large signals well above the noise level and in part the result of

small weights interacting with the noise. Since these two effects are indistinguishable and

create very complex dynamics, it is better to set the weights involved to zero and force these

dynamic processes out of the network.

The three ideas combine to yield a training method which is smoothed on the exterior,

large weight, region by regidaxization. At the same time the weights are smoothed in the
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interior, small weight, region by Boltzmann pruning. The combination of these two methods

greatly restricts the active region of weight space. Weight removal simphfies the problem

by reducing the number of degrees of freedom. Restricting the range of weight values to

a spherical shell near but excluding the origin matches the significance of the network to

the significance of the training data. In the region between constraints, dynamic stability is

enhanced by choosing activation functions with nonzero even or odd derivatives through out

the space.

After this extended discussion, one may wonder if this type of recognition problem is

unique to OCR and fingerprint problems. The authors would argue that it is not. The

characters use in this work are normalized to 32 by 32 binary images with 1024 pixels each.

Characters form a very small subset of all the possible 32 by 32 images. The point

of regularization is to confine the training dynamics to a region of weight space where the

images are near the subset of images which are meaningful characters. At the other extreme,

we argue that the subset of character images is not dense in feature space and that many

noisy images (that are near character images but are not easily recognizable characters) are

found in large training sets. The complex but inconclusive dynamics associated with the

noisy images are pruned away by the Boltzmann process. These properties are not unique

to character recognition. They are even more pronounced for fingerprints because the set

of meaningful images is a much smaller fraction of all 512 by 480 8-bit gray images. This

should not be surprising since patterns generated or identified by an image algebra [18] are

a small subset of the patterns which could be generated with arbitrary generators and hnks

in any image algebra.

4 Neurodynamics of Learning

The design and implementation of most neural network architectures is based on an analysis

of the size and content of the network training data. The direct form of analysis is suitable

when the size of the training data is small, the class distribution is uniform, and the local

and global dimension of the feature set are approximately equal. In fingerprint and character

classification applications, the training sets are large and the local and global ranks of the

feature data are very different. The complex structure of the training data requires that

large networks, 10“^ weights and 10^ nodes, be used. If the training process is treated as

a dynamical system with the weights as the independent variables this would result in a

Jacobian with 10* terms. Previous pruning studies have shown that these networks contain

at least 50% redundant weights [3] and have confirmed that no more than 12 bits of these

weights are significant. This makes direct analysis of the Jacobian numerically intractable.

To avoid the difficulties in analyzing this type of complex low accuracy system we looked

directly at the qualitative properties expected in systems of this kind [16, 11, 14] and altered

the training procedure to take the expected dynamic behavior into account. This analysis

used the dynamical systems approach to provide us with qualitative information about the

phase portrait of the system during training rather than a statistical representation of the

weight space of the MLP network. For this approach we considered the training process as

an n-dimensional dynamical system [19] where for a given neuron;

dui

dvi

Ui-— + fj{uj) 4- li (18)

where r, is the decay time for the unit and fj is the input-output transfer function, a sinusoidal
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( 19 )

function driven through the Wij interconnection weights,

fjM =\ +
3

and li is the initial input. We effectively reduce the dimension of the problem using the center

manifold approach [20]. This approach is similar to the Lyapunov- Schmidt technique [21]

which reduces the dimension of the system from n to the dimension of the center manifold,

which in numerical calculations is equal to the number of calculable eigenvalues. Since the

number of weights in the typical network is approximately 10'* and the number of bits in the

feature data is approximately 12, direct numerical methods for calculation of the eigenvalues

from the linearized dynamics are very poorly conditioned. The center manifold method has

the advantage over the Lyapunov method in that the reduced problem still is a dynamical

system with the same dynamic properties as the original system. This reduction in dimension

is implemented using the Boltzmann machine for a scaled conjugate gradient (SCG) learning

algorithm.

The reduced problem after apphcation of the center manifold method is stiU an SCG
system. The SCG requires that at any given point, the performance of the dynamical system

be assessable through a certain error function, E. Then the system parameters are itera-

tively adjusted in the opposite direction of error. The reduction on the size of error can be

approximated as follows:

dwij _ dE
dr ^ dwij ’

(
20

)

where rj is the learning rate or time constant for parameter dynamics, Wij are the weights,

and E is the error.

This approach, unlike most training methods, can reduce the error independent of the

content of the particular sample distribution and the size of training data. This results in a

saving in training time and improvement in performance without analysis of those network

components which make minimal contributions to the learning process.

5 Optimization Constraints

The level of improvement in network performance which is achieved here requires four mod-

ifications in the optimization, each of which must be incorporated in the weight and error

calculations of the scaled conjugate iteration [4]. Each of these constraints alters the dynam-

ics of the training process in a way that simphfies the form of the decision surfaces, which

globally have a dimension of about 100 with a local dimensionality of 10.5. Understand-

ing the topology of this space is useful for developing improved training methods based on

dynamics.

The four modifications all modify the error surface being optimized by changing the shape

or dimension of the error function. All of the modifications take place in the inner loop of

the optimization.

5.1 Regularization

Regularization decreases the volume of weight space used in the optimization process. This

is achieved by adding an error term which is proportional to the sum of the squares of the
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weights. The effect is to create a paraboUc term in the error function that is centered on

the origin. This reduces the average magnitude of the weights. A scheduled sequence of

regidarization values is used which starts with high regularization and decreases until no

further change in the form of the error-reject curve is detected. Constraining the network

weights causes a simphfication in network structure by reducing the number of bits in the

weights and therefore the amount of information contained in the network.

5.2 Sine Activation

The usual form for the activation function for neural networks is a sigmoidal or logistic

function. This function has small changes in all derivatives for large or small value of the

input signal. This results in conditions where the Jacobian of the dynamical system being

optimized is effectively singular [22]. This results in large numbers of near zero eigenvalues

for the optimization process and forces the optimization to be dominated by center mani-

fold dynamics [16, 20]. Changing the activation function to a sinusoidal function creates a

significant change in the dynamics of the training since even and odd higher derivatives of

the dynamical system are never both small. This improves network training dynamics and

results in better reject-accuracy performance and simpler networks [23].

5.3 Boltzmann Pruning

Boltzmann pruning has two effects on the training process. First, it takes small dynamic

components which have small real eigenvalues, and are therefore near the center manifold,

and places them on the center manifold. This simphfies training dynamics by reducing weight

space dimension. Second, Boltzmann pruning keeps the information content of the weights

bounded at values which are equal to or less than the information content of the feature

set. For example, when K-L features are derived from binary images, the significance of the

feature is no greater than the number of significant bits in the mean image value used in the

calculation, log2 N bits for N training examples. Boltzmann pruning forces this constraint

on the weights [3].

In [3], when Boltzmann pruning was used, detailed annealing schedules were used to

insure convergence of the training process. When regularization is combined with pruning,

the need for annealing schedules is removed and pruning can proceed concurrently with

the regularization process. This reduces the cost of pruning to a small computational cost

associated with the weight removal.

5.4 Class Based Error Weights

In problems with widely variant prior class probabilities, such as fingerprint classification, it

may be necessary to provide large samples of rare classes so that class statistics are accurately

represented, but it is important to train the classifier with the correct prior class probabilities.

This is discussed in chapter 7 of [24]. In the conjugate gradient method used here, both the

network errors and error signals used in the control of the iteration must be calculated using

class weights thus:

„ Y' Class Weights X Raw Error
Error = —

Y^Class Weights
(21)
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This insures that the optimization is performed in a way that produces the best solution to

the global problem but allows reasonable sampling of less common classes. In the digit classi-

fication used here, uniformly distributed classes were available but in a sample of alphabetic

text the classes are not uniformly distributed and class based error weights should be used.

6 Results

The training method was used on samples of handprinted digits and fingerprints. The digit

sample contained 7480 training and 23140 testing examples equally distributed for classes

“0” to “9”. The fingerprint data contained 2000 training and 2000 testing samples from

NIST database SD4 [25]. These training and test samples are identical to those used in [1].

The MLPs used here were three-layer networks with 96-96-10 structure and 10282 weights

for the OCR problem, and 112-112-5 structure and 13221 weights for fingerprints.

Training was carried out by selecting a Boltzmann temperature and successively training

the network at decreasing values of the regularization factor, Rf. Typically the first training

sequence used Rf = 2.0. After each training pass Rf was reduced in a 2, 1, 0.5 sequence

until the regularization had no significant effect on the reject-error performance of the test

sample. As the regularization is decreased the number of weights in the network increases,

as does the size of the average weight. The smallest net will occur at high temperature and

regularization and the largest at low temperature and regularization. The goal of the study

is to find the smallest network that gives the steepest fall in error for a given reject level.

6.1 Distribution of Weights

We have developed various methods for evaluation of network dynamics based on the statisti-

cal properties of the weights. This is necessary both because the number of computationally

identically fully connected nets is very large, 96! and 112! and because there are potentially

more than 10,000 interconnecting weights. To simplify the discussion we will show the weight

analysis for the OCR problem only. Identical arguments would apply to the fingerprint case.

6.1.1 Network Topology

Figure 3 and 4 show the distribution of interconnecting weights for a OCR network trained

at a temperature of T = 0.001 at high and low regularization, Rf = 2.0 and Rf = 0.1.

The original network had 10282 weights, the Rf = 2.0 network has 2365 weights (23%), and

the Rf = 0.1 network has 3139 weights (31%). The vertical axis in figures 3 and 4 is the

input node number. Since K-L features are used, the input nodes with the smallest numbers

have the greatest statistical significance. These nodes are highly connected; the degree of

connectively decreases with increasing node number and decreasing statistical significance.

The hidden layer nodes are always fully connected to the output nodes in these experiments.

This connectivity is not forced but the pruning process does not select these weights for

removal.

The significant topological process seen in the interconnection pattern in going from high

to low regularization is the increase in connectivity of high number K-L features. The 96th

input node (top line of figure 3) is not connected at R/ = 2.0 and has two connections at

Rf = 0.1 (top line of figure 4). The number of connections to input node 30 is 23 at R/ = 2.0

and increases to 37 at Rf = 0.1. The number of non-zero of weights increases by 35% and
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the number of connections to input node 30 increases by 61%. Nodes higher than number 30

get a disproportionate part of the increased connectivity.

6.1.2 Weight Distribution

In addition to altering the topology of the network, the training process changes the distribu-

tion of the weights. The distribution of weight on intervals of 0.05 is shown in figures 5 and

6 for temperatures of 10“^ and 10“^. The change in the magnitude of the weights is more

sensitive to regularization than to temperature. While the number of weights changes by a

factor of 2.76, 8653 to 3134, the distribution peak changes by a factor of 6.0 from 3369 to

565. Reducing the regularization doubles the mean weight size at both temperatures. At the

lower temperature, regularization created large numbers of small weights on low order K-L

features. These weights are no more effective in the classification process than the reduced

numbers of larger weights produced at higher temperature.

6.1.3 Reject Error Performance

Figures 7 and 8 show the reject error performance of ten different networks at two tem-

peratures, T = 10“^ and and T = 10“^ and at five values oi Rf. This study involved eight

temperatures and an average of six regularization values, 48 networks, for OCR. These values

are sufficient to illustrate the process. The significant factor here is that the best error-reject

performances for the two temperatures are very similar. Both Rj = 0.1 networks reach 0.1%

error after rejecting about 17% of the characters despite having different topology, mean
weight sizes different by a factor of 2.17, and weight counts different by a factor of 2.76.

Since the total information content of the network is proportional to the log base 2 of the

product of the weight size and the number of weights, the information content decreases by

only 23%, which is fuHy compensated for by improved network topology.

6.2 Digit Recognition

Figure 9 compares the results of digit recognition using MLP networks with sinusoidal and

sigmoidal activation functions and a PNN network. Both MLPs were trained using successive

regularization and Boltzmann pruning. The zero reject error rates are 3.34% for the sigmoidal

MLP, 2.54% for the PNN, and 2.45% for the sinusoidal MLP. The sinusoidal resffit is the

best yet achieved on this data and is comparable to human performance [26]. The slope of

the curves is initially proportional to their accuracy, but at higher reject rates the sinusoidal

MLP has substantially better performance, indicating simpler decision surfaces.

6.3 Fingerprint Classification

Figure 10 compares the results of fingerprint classification using MLP networks with sinu-

soidal and sigmoidal activation functions and a PNN network. Both MLPs were trained

using successive regularization and Boltzmann pruning. The zero reject error rates are 9.2%

for the sigmoidal MLP, 7.2% for the PNN, and 7.8% for the sinusoidal MLP. The sinusoidal

result is not as low as PNN at zero rejection, indicating that the decision surfaces required

for this problem are more complex than the less difficult digit recognition problem. The slope

of the reject-error curves is not proportional to the accuracy initiaRy nor at any other point.
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However, at higher reject rates the sinusoidal MLP has substantially better performance, in-

dicating simpler decision surfaces are providing better confidence estimates used to generate

the error-reject curve. At 10% reject the error rates have changed to 5.45% for the sigmoidal

MLP, 4.96% for the PNN, and 3.43% for the sinusoidal MLP. This again demonstrates that

the decision surfaces generated by the dynamically optimized MLP are simpler than those of

the other networks.

7 Conclusions

In this paper we have shown that some relatively low cost modifications to the MLP training

process based on training dynamics can result in lower error and better error-reject perfor-

mance on difficult classification problems. The changes in training strategy are motivated

by an analysis of a simphfied recurrent model which illustrates the complexity of a network

with feedback signals. These improvements yield less complex decision surfaces. The digit

recognition problem was solved with consistently better performance at all reject rates. The

more difficult fingerprint classification problem was solved in a way which still showed some

advantage for complex PNN decision surfaces at zero reject, but which yielded better perfor-

mance than PNN after a small percentage of the low confidence classifications were rejected.

In all cases the sigmodial MLPs had more error at all levels of rejection than MLPs with

sinusoidal hidden-nodes.

Appendix
Given a network containing n neurons with nodal voltages U,

^ = (UjF + G)U (A-1)

with equilibria Us given by:

Us = -F-i G (A -2)

the system has solu^-ions of the form:

V = {1- JF exp(/G dt) dt)-^ exp(/G U(O)dt). (A -3)

If we write the solution in the form:

U = AU(0) (A-4)

then for a general 3 neuron network with no driving signal, time independent internal inter-

connections and G with real eigenvalues, a symmetric network, a similarity transform S and

eigenvalues A,-:

A =

an —

an Ol2 Ol3\

“21 022 023 1

031 O32 033/
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To add driving terms the G matrix must be augmented with n additional terms, U,n,

which are coupled to the system through n new terms, G, where each term is a n by n

matrix.:

^ (o U.„)

For an uncoupled n = 3 case, such as a conventional isolated neuron MLP, this takes the

form:
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For general G the eigenvalues will be complex so that the fuU inverse of a complex S wiU

be required and the system will be stdl more complex.
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Figure 1: The diagram shows digit classifications generated by a PNN classifier using the first two

K-L components in a region centered on (0,0) with an extent large enough to contain the feature

vectors.

Figure 2: The diagram shows digit classifications generated by a MLP classifier using the first two

K-L components in a region centered on (0,0) with an extent large enough to contain the feature

vectors.
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Figure 3: Nonzero weight input layer connection pattern for Rf = 0.1 and T = 10
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Figure 5: Distribution of weight magnitudes for sinusoidal MLP as a function of the regularization

factor, i2/, for classification of digits at T == 10“^.

Figure 6: Distribution of weight magnitudes for sinusoidal MLP as a function of the regularization

factor, Rf, for classification of digits at T = 10“^.
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Figure 7: Error reject graph for sinusoidal MLP as a function of the regularization factor, Rf, for

classification of digits at T = 10~^.

Figure 8: Error reject graph for sinusoidal MLP as a function of the regularization factor, Rf, for

classification of digits a,t T = 10“^.
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Figure 9: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of

digits.
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Figure 10: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of

fingerprints.
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